Finding the Shortest Path
Greedy Best-First
Search

Anton Gerdelan <gerdela@scss.tcd.ie>



mailto:gerdela@scss.tcd.ie

Problem 1: Optimal Path

Many paths possible from A to B in some graph G

Adding total cost of all weights in a path gives its
length

Shortest or optimal path(s) have smallest overall cost
Some search algorithms will find an optimal path
e Dijkstra

e Breadth-First Search



Problem 2: Computation

Mathematics usually interested in proof of path

For real applications we want to compute a path
quickly

e Video games, self-driving cars, electricity budget...
Some algorithms are not efficient
* Breadth-First Search (equal frontier in all directions)

e Dijkstra - only somewhat guided towards goal



e \Which nodes will

e DFES visit next?

e BFS visit next?

* Dijkstra's visit next?

™~ adjacent edge weights



e Q1. How can we write

an algorithm that prefers

edges more likely to be

on the shortest path”

e Suggestions?

™~ adjacent edge weights



* (Greedy Best-First Search

* what does greedy

mean again for

algorithms”

e create a heuristic

value to rank choices

* heuristic Is a guess

COSt

e usually pessimistic -

why"?



- Manhattan Distance

* city blocks across +

city blocks up

* 4+ 10=14

* 0+ 10=10

NN\

e useful heuristic

e simple

* pessimistic

e alt: "As the crow flies’

* why is this worse?



Greedy Best-First Search

Like Breadth-First Search excepit...

queue of choices are ranked using a heuristic
priority queue - insertion sort or a heap ADT?

the parent stays in the queue so that it can back-track
stops when goal state found

- Q. why is this unusual?



Greedy Best-First Search

* usually many fewer nodes visited than BFS and
Dijkstra

* does not guaranty a shortest path like Dijkstra's

* vulnerable to local maxima traps









F+1 {£40 ) 7+







greedy means B
choose local maximum at
each stage hoping to find
global maximum

Implementation may
backtrack here If
parent has priority
over equal child




back-track

{0 parent







lots of back-tracking in maxima traps (dead-ends)
each node stores its parent to allow back-track
investigated nodes can be flagged to prevent infinite
loops - the closed list

frontier is the open list




at halt work backwards
through parents to get
path

wasted time in trap
very few nodes are
investigated overall
BFS would have visited

nearly every node




Greedy Best-First Search

* add a heuristic to Breadth-First Search prioritise
strongly

 narrows frontier

* finds path to goal in far tfewer steps

e path may not be the shortest path
* greedy = short-sighted

e vulnerable to local maxima traps



