
Finding the Shortest Path 
Greedy Best-First 

Search
Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie


Problem 1: Optimal Path
• Many paths possible from A to B in some graph G 

• Adding total cost of all weights in a path gives its 
length 

• Shortest or optimal path(s) have smallest overall cost 

• Some search algorithms will find an optimal path 

• Dijkstra 

• Breadth-First Search



Problem 2: Computation
• Mathematics usually interested in proof of path 

• For real applications we want to compute a path 
quickly 

• Video games, self-driving cars, electricity budget… 

• Some algorithms are not efficient 

• Breadth-First Search (equal frontier in all directions) 

• Dijkstra - only somewhat guided towards goal



• Which nodes will 
• DFS visit next? 
• BFS visit next? 
• Dijkstra's visit next?

adjacent edge weights



• Q 1. How can we write 

an algorithm that prefers 
edges more likely to be 

on the shortest path? 
• Suggestions?

adjacent edge weights



• Greedy Best-First Search 
• what does greedy 

mean again for 

algorithms? 
• create a heuristic 

value to rank choices 
• heuristic is a guess 

cost 
• usually pessimistic - 

why?



• Manhattan Distance
• city blocks across + 

city blocks up 
• 4 + 10 = 14 
• 0 + 10 = 10 
• useful heuristic 

• simple 
• pessimistic 

• alt: "As the crow flies" 
• why is this worse?



Greedy Best-First Search
• Like Breadth-First Search except… 

• queue of choices are ranked using a heuristic 

• priority queue - insertion sort or a heap ADT? 

• the parent stays in the queue so that it can back-track 

• stops when goal state found 

• Q. why is this unusual?



Greedy Best-First Search

• usually many fewer nodes visited than BFS and 
Dijkstra 

• does not guaranty a shortest path like Dijkstra's 

• vulnerable to local maxima traps











greedy means 
choose local maximum at  
each stage hoping to find  
global maximum

implementation may  
backtrack here if 

parent has priority  
over equal child



back-track 
to parent





• lots of back-tracking in maxima traps (dead-ends) 
• each node stores its parent to allow back-track 
• investigated nodes can be flagged to prevent infinite 

loops - the closed list
• frontier is the open list



• at halt work backwards 
through parents to get 
path 

• wasted time in trap 
• very few nodes are 

investigated overall 
• BFS would have visited 

nearly every node



Greedy Best-First Search
• add a heuristic to Breadth-First Search prioritise 

strongly 

• narrows frontier 

• finds path to goal in far fewer steps 

• path may not be the shortest path 

• greedy = short-sighted 

• vulnerable to local maxima traps


